Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: isotherm, kinetics, thermodynamics and optimization studies

Author:

Adeogun Abideen Idowu,Akande James Asamu,Idowu Mopelola Abidemi,Kareem Sarafadeen Olateju

Abstract

Abstract Dyes containing effluents constitute hazards to the environments and endanger human and aquatic lives. Although activated charcoal has been adjudged the best for adsorption treatment of wastewater, its regeneration and high cost have limited their applications, hence the quest for alternative adsorbent. Magnetic tuned biosorbent was prepared from sorghum husks by in situ co-precipitation of Fe3O4. It was characterized using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy. The biosorbent was then used for the removal of crystal violet (CV) and methylene blue (MB) dyes from aqueous solutions in a batch process. The effects of temperature, initial dye concentration, dosage, contact time as well as pH were investigated, and data obtained were analysed with appropriate kinetic and isotherm models. Response surface method was used for the optimization study of the adsorption using Box–Behnken experimental design. Pseudo-second-order kinetic model was the most appropriate model for both dyes with correlation coefficient (R2) > 0.9 and low % standard error values. The equilibrium data were best fitted with Langmuir isotherm with maximum adsorption capacity (Qmax) of 18.87 and 30.00 mg g−1 for CV and MB, respectively. The thermodynamic parameters for the adsorption processes showed that it was spontaneous, endothermic and random systems with free energy changes less than zero, enthalpy changes (∆H) of + 49.81 and + 51.18 kJ mol−1, entropy changes (∆S) of + 178.39 and + 177.34 J mol−1 K−1 for MB and CV dyes, respectively. Optimization studies revealed that 95% of the dyes are removable at 1.0 g adsorbent dosage and pH of 4.05 at 50 °C with initial dye concentration of 50 mg L−1. The prepared adsorbent is cheap, easily recycled and highly effective for the treatment of dye-contaminated water.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3