Autoencoder-Based Anomaly Detection System for Online Data Quality Monitoring of the CMS Electromagnetic Calorimeter

Author:

,Abadjiev D.,Adams T.ORCID,Adzic P.ORCID,Ahmad M.ORCID,Amendola C.ORCID,Andrews M. B.ORCID,Arcidiacono R.ORCID,Argiro S.ORCID,Askew A.ORCID,Auffray E.ORCID,Azzolini V.,Bailleux D.,Band R.ORCID,Barney D.ORCID,Barria P.ORCID,Bartosik N.ORCID,Basile C.,Bastos D.ORCID,Bell K. W.ORCID,Besancon M.ORCID,Bianco R.,Biino C.ORCID,Blinov V.,Borca C.,Bornheim A.ORCID,Brown R. M.ORCID,Campana M.ORCID,Castells S.ORCID,Cavallari F.ORCID,Cetorelli F.ORCID,Chatterjee R. M.,Chatterjee S.ORCID,Chaudhary G.ORCID,Chen J. A.,Chernyavskaya N.ORCID,Chung H.,Cipriani M.ORCID,Cokic L.,Cooke C.ORCID,Cossio F.,Couderc F.ORCID,Cristoforetti D.,Cucciati G.,Cunqueiro Mendez L.,Da Silva Di Calafiori D.,Dafinei I.,Cockerill D. J. A.ORCID,Dejardin M.ORCID,Re D. DelORCID,Ricca G. DellaORCID,Depasse P.ORCID,Dervan J.,Marco E. DiORCID,Diemoz M.ORCID,Dimova T.ORCID,Dissertori G.ORCID,Dittmar M.,Dolgopolov A.,Donegà M.ORCID,Dordevic M.ORCID,Mamouni H. El,Errico F.ORCID,Espinosa F.,Faure J. L.,Fay J.ORCID,Menendez J. FernandezORCID,Ferri F.ORCID,Finco L.ORCID,Fiori F.,Frahm E.,Funk W.ORCID,Gadek T.,Gajownik J.,Galli M.ORCID,Ganjour S.ORCID,Gascon S.ORCID,Ghezzi A.ORCID,Ghose P.,Gninenko S.ORCID,Goadhouse S.,Godinovic N.ORCID,Golubev N.ORCID,Govoni P.ORCID,Gras P.ORCID,Hakala J.ORCID,de Monchenault G. HamelORCID,Harilal A.ORCID,Härringer N.,Hashmi R.,Heath H. F.ORCID,Hirosky R.ORCID,Ho K. W.,Hou X.,Ingram Q.ORCID,Jain Sh.ORCID,Javaid T.ORCID,Jessop C.ORCID,Jimènez R.,Joshi B. M.ORCID,Jourd‘hui E.,Kaadze K.ORCID,Kao Y.-W.,Kardapoltsev L.ORCID,Khurana R.,King J.ORCID,Kirilovas A.,Konstantinov D.ORCID,Kovac M.ORCID,Krishna A.ORCID,Kuo C. M.,Lambrecht L.ORCID,Lavizzari G.,Lecoq P.ORCID,Ledovskoy A.ORCID,Legger F.ORCID,Lelas D.ORCID,Li Y. y.ORCID,Liang Z.,Lin W.,Longo E.ORCID,Loukas N.ORCID,Lu R. -S.ORCID,Lustermann W.ORCID,Lutton L.ORCID,Lyon A. -M.ORCID,Maeshima K.ORCID,Malcles J.ORCID,Mandrik P.ORCID,Manzoni R. A.ORCID,Marchese L.ORCID,Marinelli N.,Marini A. C.ORCID,Martin L.,Marzocchi B.ORCID,Mascellani A.ORCID,Massironi A.ORCID,Matveev V.ORCID,Mazza G.,Meridiani P.ORCID,Mijic M.,Mijuskovic J.ORCID,Milenovic P.ORCID,Milosevic J.ORCID,Monteno M.ORCID,Monti F.ORCID,Moortgat F.ORCID,Mousa J.ORCID,Mudholkar T.ORCID,Nessi-Tedaldi F.ORCID,Nicolaou C.,Nigamova A.ORCID,Obertino M. M.ORCID,Organtini G.ORCID,Orimoto T.ORCID,Orlandi F.,Ovtin I.ORCID,Paganis E.ORCID,Papagiannis D.ORCID,Pandolfi F.ORCID,Paramatti R.ORCID,Park K.ORCID,Pastrone N.ORCID,Paulini M.ORCID,Pauss F.ORCID,Petkovic, A.,Petraityte E.,Pettinacci V.,Petyt D.ORCID,Pigazzini S.ORCID,Pinolini B. S.,Prova P. R.,Quaranta C.ORCID,Ragazzi S.ORCID,Rahatlou S.ORCID,Rasteiro Da Silva J. C.,Razis P. A.ORCID,Teles P. RebelloORCID,Reis T.ORCID,Riti F.ORCID,Rogan C.ORCID,Romanteau T.,Rosowsky A.,Rovelli C.ORCID,Rovere M.ORCID,Rusack R.ORCID,Salvi G.ORCID,Sancar O.,Sanchez A.ORCID,Sandever C.,Santanastasio F.ORCID,Saradhy R.ORCID,Sarkar U.ORCID,Schneider M.,Schroeder N.ORCID,Sculac A.,Sculac T.ORCID,Shahzad M. A.,Shepherd-Themistocleous C. H.ORCID,Simkina P.ORCID,Singla A.ORCID,Singovsky A.,Skovpen Y.ORCID,Smith V. J.ORCID,Soffi L.ORCID,Stachon K.,Steen A.ORCID,Steggemann J.ORCID,Succar M.ORCID,Tao J.ORCID,Tishelman-Charny A.ORCID,Tiwari P. C.ORCID,Tornago M.ORCID,Tramontano R.ORCID,Tsai L. -S.,Usai E.ORCID,Valsecchi D.ORCID,Vagnerini A.ORCID,Varela J.ORCID,Venditti R.ORCID,Verma P.ORCID,Vlassov E.,Wachirapusitanand V.ORCID,Wamorkar T.ORCID,Wang C.,Wang J.ORCID,Wadud M. A.ORCID,Yu S. S.ORCID,Zabi A.ORCID,Zghiche A.ORCID,Zhang L.,Zhu R. Y.ORCID,Zygal L.ORCID

Abstract

AbstractThe CMS detector is a general-purpose apparatus that detects high-energy collisions produced at the LHC. Online data quality monitoring of the CMS electromagnetic calorimeter is a vital operational tool that allows detector experts to quickly identify, localize, and diagnose a broad range of detector issues that could affect the quality of physics data. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning is presented enabling the detection of anomalies in the CMS electromagnetic calorimeter data. A novel method is introduced which maximizes the anomaly detection performance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC collision data. In addition, the first results from deploying the autoencoder-based system in the CMS online data quality monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability to detect issues missed by the existing system.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3