Quantum-Annealing-Inspired Algorithms for Track Reconstruction at High-Energy Colliders

Author:

Okawa Hideki,Zeng Qing-Guo,Tao Xian-Zhe,Yung Man-Hong

Abstract

AbstractCharged particle reconstruction or track reconstruction is one of the most crucial components of pattern recognition in high-energy collider physics. It is known to entail enormous consumption of computing resources, especially when the particle multiplicity is high, which will be the conditions at future colliders, such as the High Luminosity Large Hadron Collider and Super Proton–Proton Collider. Track reconstruction can be formulated as a quadratic unconstrained binary optimization (QUBO) problem, for which various quantum algorithms have been investigated and evaluated with both a quantum simulator and hardware. Simulated bifurcation algorithms are a set of quantum-annealing-inspired algorithms, known to be serious competitors to other Ising machines. In this study, we show that simulated bifurcation algorithms can be employed to solve the particle tracking problem. The simulated bifurcation algorithms run on classical computers and are suitable for parallel processing and usage of graphical processing units, and they can handle significantly large amounts of data at high speed. These algorithms exhibit reconstruction efficiency and purity comparable to or sometimes improved over those of simulated annealing, but the running time can be reduced by as much as four orders of magnitude. These results suggest that QUBO models together with quantum-annealing-inspired algorithms are valuable for current and future particle tracking problems.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3