A Case Study of Sending Graph Neural Networks Back to the Test Bench for Applications in High-Energy Particle Physics

Author:

Pfeffer EmanuelORCID,Waßmer MichaelORCID,Cung Yee-Ying,Wolf RogerORCID,Husemann UlrichORCID

Abstract

AbstractIn high-energy particle collisions, the primary collision products usually decay further resulting in tree-like, hierarchical structures with a priori unknown multiplicity. At the stable-particle level all decay products of a collision form permutation invariant sets of final state objects. The analogy to mathematical graphs gives rise to the idea that graph neural networks (GNNs), which naturally resemble these properties, should be best-suited to address many tasks related to high-energy particle physics. In this paper we describe a benchmark test of a typical GNN against neural networks of the well-established deep fully connected feed-forward architecture. We aim at performing this comparison maximally unbiased in terms of nodes, hidden layers, or trainable parameters of the neural networks under study. As physics case we use the classification of the final state $$\text{X}$$ X produced in association with top quark–antiquark pairs in proton–proton collisions at the Large Hadron Collider at CERN, where $$\text{X}$$ X stands for a bottom quark–antiquark pair produced either non-resonantly or through the decay of an intermediately produced $$\text{Z}$$ Z or Higgs boson.

Funder

German Federal Ministry of Education and Research

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundations of automatic feature extraction at LHC–point clouds and graphs;The European Physical Journal Special Topics;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3