Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers

Author:

Peters Andreas J.,van der Ster Daniel C.

Abstract

AbstractCephFS is a network filesystem built upon the Reliable Autonomic Distributed Object Store (RADOS). At CERN we have demonstrated its reliability and elasticity while operating several 100-to-1000TB clusters which provide NFS-like storage to infrastructure applications and services. At the same time, our lab developed EOS to offer high performance 100PB-scale storage for the LHC at extremely low costs while also supporting the complete set of security and functional APIs required by the particle-physics user community. This work seeks to evaluate the performance of CephFS on this cost-optimized hardware when it is combined with EOS to support the missing functionalities. To this end, we have setup a proof-of-concept Ceph Octopus cluster on high-density JBOD servers (840 TB each) with 100Gig-E networking. The system uses EOS to provide an overlayed namespace and protocol gateways for HTTP(S) and XROOTD, and uses CephFS as an erasure-coded object storage backend. The solution also enables operators to aggregate several CephFS instances and adds features, such as third-party-copy, SciTokens, and high-level user and quota management. Using simple benchmarks we measure the cost/performance tradeoffs of different erasure-coding layouts, as well as the network overheads of these coding schemes. We demonstrate some relevant limitations of the CephFS metadata server and offer improved tunings which can be generally applicable. To conclude, we reflect on the advantages and drawbacks related to this architecture, such as RADOS-level free space requirements and double-network penalties, and offer ideas for improvements in the future.

Funder

CERN

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics,Computer Science (miscellaneous),Software

Reference14 articles.

1. Albrecht J et al (2019) A roadmap for HEP software and computing R&D for the 2020s. Comput Softw Big Sci 3(1):1–49

2. Carlson M et al (2014) Software defined storage. Storage Networking Industry Assoc, San Francisco. https://www.snia.org/education/whitepapers

3. Dewhurst A et al (2017) The deployment of a large scale object store at the RAL Tier-1. J Phys Conf Ser 898(6):062051

4. Weil SA et al (2006) Ceph: a scalable, high-performance distributed file system. In: Proceedings of the 7th symposium on operating systems design and implementation, pp 307–320

5. Peters AJ, Sindrilaru EA, Adde G (2015) EOS as the present and future solution for data storage at CERN. J Phys Conf Ser 664(4):042042

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3