Abstract
Abstract
Introduction
The aim of this study was to investigate the associations of patient characteristics, bone mineral density (BMD), bone microarchitecture and calculated bone strength with secondary displacement of a DRF based on radiographic alignment parameters.
Materials and methods
Dorsal angulation, radial inclination and ulnar variance were assessed on conventional radiographs of a cohort of 251 patients, 38 men and 213 women, to determine the anatomic position of the DRF at presentation (primary position) and during follow-up.
Secondary fracture displacement was assessed in the non-operatively treated patients (N = 154) with an acceptable position, preceded (N = 97) or not preceded (N = 57) by primary reduction (baseline position). Additionally, bone microarchitecture and calculated bone strength at the contralateral distal radius and tibia were assessed by HR-pQCT in a subset of, respectively, 63 and 71 patients.
Outcome
Characteristics of patients with and without secondary fracture displacement did not differ. In the model with adjustment for primary reduction [OR 22.00 (2.27–212.86), p = 0.008], total [OR 0.16 (95% CI 0.04–0.68), p = 0.013] and cortical [OR 0.19 (95% CI 0.05–0.80], p = 0.024] volumetric BMD (vBMD) and cortical thickness [OR 0.13 (95% CI 0.02–0.74), p = 0.021] at the distal radius were associated with secondary DRF displacement. No associations were found for other patient characteristics, such as age gender, BMD or prevalent vertebral fractures.
Conclusions
In conclusion, our study indicates that besides primary reduction, cortical bone quality may be important for the risk of secondary displacement of DRFs.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献