Discharging the medial knee compartment: comparison of pressure distribution and kinematic shifting after implantation of an extra-capsular absorber system (ATLAS) and open-wedge high tibial osteotomy—a biomechanical in vitro analysis

Author:

Kloos FerdinandORCID,Becher Christoph,Fleischer Benjamin,Ettinger Max,Bode Lisa,Schmal Hagen,Fuchs Andreas,Ostermeier Sven,Bode Gerrit

Abstract

AbstractPurposeYoung and active patients suffering early degenerative changes of the medial compartment with an underlying straight-leg axis do face a therapeutical gap as unloading of the medial compartment cannot be achieved by high tibial osteotomy. Extracapsular absorbing implants were developed to close this existing therapeutical gap. Purpose of the present cadaveric biomechanical study was to compare the unloading effect of the knee joint after implantation of an extra-articular absorber system (ATLAS) in comparison to open-wedge high tibial osteotomy (OW-HTO) under physiological conditions. The hypothesis of the study was that implantation of an extra-capsular absorber results in an unloading effect comparable to the one achievable with OW-HTO.MethodsEight fresh-frozen cadaveric knees were tested under isokinetic flexion–extension motions and physiological loading using a biomechanical knee simulator. Tibiofemoral area contact and peak contact pressures were measured using pressure-sensitive film in the untreated medial compartment. The tibiofemoral superior–inferior, latero-medial translation and varus/valgus rotation were measured with a 3D tracking system Polaris. Pressures and kinematics changes were measured after native testing, ATLAS System implantation and OW-HTO (5° and 10° correction angles) performed with an angular stable internal fixator (TomoFix).ResultsThe absorber device decreased the pressure in the medial compartment near full extension moments. Implantation of the ATLAS absorbing system according to the manufacturers’ instruction did not result in a significant unloading effect. Deviating from the surgery manual provided by the manufacturer the implantation of a larger spring size while applying varus stress before releasing the absorber resulted in a significant pressure diminution. Contact pressure decreased significantly Δ0.20 ± 0.04 MPap = 0.044. Performing the OW-HTO in 5° correction angle resulted in significant decreased contact pressure (Δ0.25 ± 0.10 MPa,p = 0.0036) and peak contact pressure (Δ0.39 ± 0.38 MPa,p = 0.029) compared with the native test cycle. With a 10° correction angle, OW-HTO significantly decreased area contact pressure by Δ0.32 ± 0.09 MPa,p = 0.006 and peak contact pressure by Δ0.48 ± 0.12 MPa,p = 0.0654 compared to OW-HTO 5°. Surgical treatment did not result in kinematic changes regarding the superior–inferior translation of the medial joint section. A significant difference was observed for the translation towards the lateral compartment for the ATLAS system Δ1.31 ± 0.54 MPap = 0.022 and the osteotomy Δ3.51 ± 0.92 MPap = 0.001. Furthermore, significant shifting varus to valgus rotation of the treated knee joint was verified for HTO 5° about Δ2.97–3.69° and for HTO 10° Δ4.11–5.23° (pHTO 5 = 0.0012; pHTO 10 = 0.0007) over the entire extension cycle.ConclusionOW-HTO results in a significant unloading of the medial compartment. Implantation of an extra-capsular absorbing device did not result in a significant unloading until the implantation technique was applied against the manufacturer’s recommendation. While the clinical difficulty for young and active patients with straight-leg axis and early degenerative changes of the medial compartment persists further biomechanical research to develop sufficient unloading devices is required.

Funder

Müller - Fahnenberg Study of Freiburg

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3