Locking suture repair versus ligament augmentation—a biomechanical study regarding the treatment of acute lateral collateral ligament injuries of the elbow

Author:

Ott Nadine,Harland Arne,Lanzerath Fabian,Leschinger Tim,Hackl Michael,Wegmann Kilian,Müller Lars Peter

Abstract

Abstract Background Lateral collateral ligament (LCL) tears are frequently observed in fractures and dislocations of the elbow. Recent biomechanical evidence suggests that additional ligament augmentation may improve repair stability. The aim of this biomechanical in-vitro study was to compare the resistance of a locking suture repair of the LCL with a ligament augmentation technique. Material and methods Eight fresh frozen cadaveric elbows were evaluated for stability against varus/posterolateral rotatory forces (3 Nm). A strain gauge (µm/m; negative values) was placed at the origin and insertion of the lateral ulnar collateral ligament (LUCL) and cyclic loading was performed for 1000 cycles. We analyzed three distinct scenarios: (A) native LCL, (B) locking transosseou suture repair of the LCL, (C) simple LCL repair with additional ligament augmentation of the LUCL. Results The mean measured strain was − 416.1 µm/m (A), − 618 µm/m (B) and − 288.5 µm/m (C) with the elbow flexion at 90°; the strain was significantly higher in scenario B compared to C (p = .01). During the cyclic load (1000) the mean measured strain was − 523.1 µm/m (B) and − 226.3 µm/m (C) with the elbow flexion at 60°; the strain was significantly higher in scenario B compared to C (p = .01). No significant difference between the first and the last cycles was observed (p = .09; p = .07). One failure of the LCL repair was observed after 1000 cycles; none of the ligament augmentations failed. Conclusion Ligament augmentation (C) provides higher resistance compared to the native LCL (A) and to the locking suture repair technique (B). Both techniques, however, hold up during 1000 cycles. While ligament augmentation might enhance the primary stability of the repair, future clinical studies have to show whether this increase in resistance leads to negative effects like higher rates of posttraumatic elbow stiffness. Level of evidence Basic science study, biomechanics.

Funder

Universität zu Köln

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3