Mechanical failure of distal femur mega prosthesis due to polyaryl-ether-ether-ketone (PEEK) hinge component

Author:

Merose Omri,Factor ShaiORCID,Gortzak Yair,Dadia Solomon,Segal Ortal,Vituri Aya,Bussiba Arie,Sternheim Amir

Abstract

Abstract Background Polyaryl-ether-ether-ketone (PEEK) has gained popularity as a substrate for orthopaedic hardware due to its desirable properties such as heat and deformation resistance, low weight, and ease of manufacturing. However, we observed a relatively high failure rate of PEEK-based hinges in a distal femur reconstruction system. In this study, we aimed to evaluate the proportion of patients who experienced implant failure, analyse the mechanism of failure, and document the associated clinical findings. Methods We conducted a retrospective cohort study, reviewing the medical charts of 56 patients who underwent distal femur resection and reconstruction with a PEEK Optima hinge-based prosthesis between 2004 and 2018. Concurrently, we performed a clinical and biomechanical failure analysis. Results PEEK component failure occurred in 21 out of 56 patients (37.5%), with a mean time to failure of 63.2 months (range: 13–144 months, SD: 37.9). The survival distributions of PEEK hinges for males and females were significantly different (chi-square test, p-value = 0.005). Patient weight was also significantly associated with the hazard of failure (Wald’s test statistic, p-value = 0.031). Discussion Our findings suggest that PEEK hinge failure in a distal femur reconstruction system is correlated with patient weight and male gender. Retrieval analysis revealed that failure was related to fretting and microscopic fractures due to cyclic loading, leading to instability and mechanical failure of the PEEK component in full extension. Further assessment of PEEK-based weight bearing articulating components against metal is warranted.

Funder

Tel Aviv University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3