“Mother and baby plate”: a strategy to improve stability in proximal fractures of the ulna

Author:

Hoelscher-Doht Stefanie,Zufall Nicola,Heilig Maximilian,Heilig Philipp,Paul Mila Marie,Meffert Rainer Heribert

Abstract

Abstract Introduction Proximal ulna fractures with a large zone of comminution, such as in the context of Monteggia injuries, require mechanically strong osteosyntheses as they occur in regions with high physiological joint load. Consequently, implant failure and pseudarthrosis are critical and devastating complications, especially with the background of mainly young patients being affected. An effective solution could be provided by adding a small second plate 90° angulated to the standard dorsal plate in the area of non-union. Thus, this study investigates whether, from a biomechanical point of view, the use of such a mini or baby plate is worthwhile. Materials and methods Comminuted fractures distal to the coronoid process, equivalent to Jupiter type IIb fractures, are generated on artificial Sawbones® of the ulna and stabilized using two different plate osteosyntheses: in the first group, a dorsal locking compression olecranon plate is used (LCP group). In the second group, a small, ulnar 5-hole olecranon plate is added as a baby plate in addition to the mother plate at the level of the fracture zone (MBP group). Dynamic biomechanical loading in degrees of flexion from 0° to 90° is carried out to determine yield load, stiffness, displacement, and changes in fracture gap width as well as bending of the dorsal plate. Results The “mother-baby-plate” osteosynthesis had a significantly higher yield load (p < 0.01) and stiffness (p = 0.01) than the LCP group. This correlates with the increased movement of the proximal fracture element during cyclic testing for the LCP group compared to the MBP group as measured by an optical metrology system. Conclusions Here, we show evidence that the addition of a small plate to the standard plate is highly effective in increasing the biomechanical stability in severe fractures equivalent to Jupiter type IIb. As it hopefully minimizes complications like pseudarthrosis and implant failure and as the additional preparatory effort leading to compromised blood supply is regarded to be negligible, this justifies and highly advises the use of a mother–baby-plate system.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3