Early radiographic osseointegration of a novel highly porous 3D-printed titanium collar for megaprostheses compared to a previous generation smooth HA-coated collar

Author:

Haider ThomasORCID,Pagkalos Iosif,Morris Guy,Parry Michael C.,Jeys Lee M.

Abstract

Abstract Purpose Extracortical osseointegration at the collar-bone interface of megaprostheses is associated with improved implant stability, lower rates of stem fracture and loosening. The use of hydroxy-apatite (HA-) coated collars showed mixed results in previously published reports. A novel collar system has recently become available utilizing additive manufacturing technology to create a highly porous titanium collar with a calcium-phosphate coated surface. The aim of this study was to evaluate our early experience with this novel collar and compare it to the previously used HA-coated model. Methods Twenty patients who underwent megaprostheses implantation utilizing the novel collar system were case matched to 20 patients who had previously undergone a HA-coated collar. A minimum radiological follow-up of three months was available in all included patients. Osseointegration was evaluated using postoperative plain radiographs in two planes based on a previously published semi-quantitative score. Results Compared to the HA-coated collar the use of the novel highly porous collar was associated with a higher proportion of cases demonstrating osseointegration at the bone-collar interface (80% vs. 65%). Application of the highly porous collar led to a significantly shortened time to reach the final ongrowth score (173 ± 89 days vs. 299 ± 165 days, p < 0.05). At one year follow-up, 90% of the novel collars had reached their final osseoingration grade compared to 50% in the HA-coated collar group (p < 0.001). Radiological osseointegration was seen in 71% for highly porous collars where the indication was revision arthroplasty, compared to 27% in reported in the literature. Conclusion These results indicate more reliable and accelerated osseointegration at the bone-collar interface of a novel highly porous collar system compared to a previously used HA-coated collar. Further studies are warranted to confirm these findings.

Funder

Medical University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3