Author:
Palomar Quentin,Xu XingXing,Gondran Chantal,Holzinger Michael,Cosnier Serge,Zhang Zhen
Abstract
AbstractA homemade gold electrode is modified with a carbon nanotubes/gold nanoparticles nanocomposite to perform selective and sensitive electrochemical detection of dengue toxin. This nanostructured composite offers a large specific surface and a reactive interface allowing the immobilization of biological material. Dengue antibodies are immobilized on gold nanoparticles via covalent bonding for dengue toxin detection. The porous tridimensional network of carbon nanotubes and gold nanoparticles enhances the electrochemical signal and the overall performance of the sensor. After optimization, the system exhibits a high sensitivity of − 0.44 ± 0.01 μA per decade with wide linear range between 1 × 10−12 and 1 × 10−6 g/mL at a working potential of 0.22 V vs Ag/AgCl. The extremely low detection limit (3 × 10−13 g/mL) ranks this immunosensor as one of the most efficient reported in the literature for the detection of recombinant viral dengue virus 2 NS1. This biosensor also offers good selectivity, characterized by a low response to various non-specific targets and assays in human serum. The outstanding performances and the reproducibility of the system place the biosensor developed among the best candidates for future medical applications and for early diagnosis of dengue fever.
Funder
Forskningsrådet för Arbetsliv och Socialvetenskap
Swedish Research Council
Wallenberg Academy Fellow Program
LABoratoires d’EXcellence ARCANE
CBH-EUR-GS
Publisher
Springer Science and Business Media LLC
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献