Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors

Author:

Kirchner Eva-Maria,Hirsch ThomasORCID

Abstract

AbstractThis review (162 references) focuses on two-dimensional carbon materials, which include graphene as well as its allotropes varying in size, number of layers, and defects, for their application in electrochemical sensors. Many preparation methods are known to yield two-dimensional carbon materials which are often simply addressed as graphene, but which show huge variations in their physical and chemical properties and therefore on their sensing performance. The first section briefly reviews the most promising as well as the latest achievements in graphene synthesis based on growth and delamination techniques, such as chemical vapor deposition, liquid phase exfoliation via sonication or mechanical forces, as well as oxidative procedures ranging from chemical to electrochemical exfoliation. Two-dimensional carbon materials are highly attractive to be integrated in a wide field of sensing applications. Here, graphene is examined as recognition layer in electrochemical sensors like field-effect transistors, chemiresistors, impedance-based devices as well as voltammetric and amperometric sensors. The sensor performance is evaluated from the material’s perspective of view and revealed the impact of structure and defects of the 2D carbon materials in different transducing technologies. It is concluded that the performance of 2D carbon-based sensors is strongly related to the preparation method in combination with the electrical transduction technique. Future perspectives address challenges to transfer 2D carbon-based sensors from the lab to the market.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Analytical Chemistry

Reference162 articles.

1. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

3. Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn J-H, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810

4. Zhang H, Chhowalla M, Liu Z (2018) 2D Nanomaterials: Graphene and transition metal dichalcogenides. Chem Soc Rev 47:3015–3017

5. Benck JD, Pinaud BA, Gorlin Y, Jaramillo TF (2014) Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS One 9:e107942

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3