On-site extraction of benzophenones from swimming pool water using hybrid tapes based on the integration of hydrophilic-lipophilic balance microparticles and an outer magnetic nanometric domain

Author:

Belhameid Ahmed,Casado-Carmona Francisco Antonio,Megriche Adel,López-Lorente Ángela InmaculadaORCID,Lucena Rafael,Cárdenas Soledad

Abstract

AbstractAn on-site extraction device is presented consisting of scotch tape modified with concentric domains of micrometric hydrophilic-lipophilic balance (HLB) particles surrounded by a ring of nanometric magnetic ones. On the one hand, HLB microparticles are readily available at the surface of the tape, exposed to interact with the target analytes, being responsible for the extraction capacity of the sorptive phase. On the other hand, the presence of magnetic nanoparticles enables the attachment of the modified tape onto a metallic screw via a magnet, which is then coupled to a wireless drill, enabling the stirring of the microextraction device. Both are simply fixed to the cost-effective, flexible, and versatile support, i.e., scotch tape, owing to their adhesive properties. The microextraction device has been applied to the determination of six benzophenones in swimming pool water samples. The variables that may affect the extraction process have been evaluated. Under the optimum conditions and using liquid chromatography-tandem mass spectrometry as the instrumental technique, the method provided a limit of detection of 0.03 µg L−1. The intra-day precision, evaluated at three different concentration levels and expressed as relative standard deviation, was lower than 10%, which also comprises the variability within single-use sorptive tapes. The accuracy, calculated with spiked samples and expressed as relative recovery, ranged from 71 to 138%. The method was applied to the analysis of swimming pool water, revealing the presence of such compounds. Graphical Abstract

Funder

Consejería de Transformación Económica, Industria, Conocimiento y Universidades

Universidad de Córdoba

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3