Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications

Author:

Coelho JoãoORCID,Correia Ricardo F.ORCID,Silvestre SaraORCID,Pinheiro TomásORCID,Marques Ana C.ORCID,Correia M. Rosário P.ORCID,Pinto Joana VazORCID,Fortunato ElviraORCID,Martins RodrigoORCID

Abstract

Abstract Laser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper. The developed strategy relies on soaking the paper in a 0.1 M sodium tetraborate solution (borax) prior to the laser processing. Borax acts as a fire-retardant agent, thus allowing the laser processing of sensitive substrates that other way would be easily destroyed under the high-energy beam. LIG on paper exhibiting low sheet resistance (30 Ω sq−1) and improved electrode/electrolyte interface was obtained by the proposed method. When used as microsupercapacitor electrodes, this laser-induced graphene resulted in specific capacitances of 4.6 mF cm−2 (0.015 mA cm−2). Furthermore, the devices exhibit excellent cycling stability (> 10,000 cycles at 0.5 mA cm−2) and good mechanical properties. By connecting the devices in series and parallel, it was also possible to control the voltage and energy delivered by the system. Thus, paper-based LIG-MSC can be used as energy storage devices for flexible, low-cost, and portable electronics. Additionally, due to their flexible design and architecture, they can be easily adapted to other circuits and applications with different power requirements. Graphical Abstract

Funder

Fundação para a Ciência e a Tecnologia

European Research Council

Fundação para a Ciência e Tecnologia

Universidade Nova de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3