Exploring the influence of silicon oxide microchips shape on cellular uptake using imaging flow cytometry

Author:

Bruce Gordon,Bagherpour Saman,Duch Marta,Plaza José Antonio,Stolnik Snow,Pérez-García LluïsaORCID

Abstract

AbstractNano- and micro-carriers of therapeutic molecules offer numerous advantages for drug delivery, and the shape of these particles plays a vital role in their biodistribution and their interaction with cells. However, analysing how microparticles are taken up by cells presents methodological challenges. Qualitative methods like microscopy provide detailed imaging but are time-consuming, whereas quantitative methods such as flow cytometry enable high-throughput analysis but struggle to differentiate between internalised and surface-bound particles. Instead, imaging flow cytometry combines the best of both worlds, offering high-resolution imaging with the efficiency of flow cytometry, allowing for quantitative analysis at the single-cell level. This study focuses on fluorescently labelled silicon oxide microchips of various morphologies but related surface areas and volumes: rectangular cuboids and apex-truncated square pyramid microchips fabricated using photolithography techniques, offering a reliable basis for comparison with the more commonly studied spherical particles. Imaging flow cytometry was utilised to evaluate the effect of particle shape on cellular uptake using RAW 264.7 cells and revealed phagocytosis of particles with all shapes. Increasing the particle dose enhanced the uptake, while macrophage stimulation had minimal effect. Using a ratio particle:cell of 10:1 cuboids and spheres showed an uptake rate of approximately 50%, in terms of the percentage of cells with internalised particles, and the average number of particles taken up per cell ranging from about 1–1.5 particle/cell for all the different shapes. This study indicates how differently shaped micro-carriers offer insights into particle uptake variations, demonstrating the potential of non-spherical micro-carriers for precise drug delivery applications. Graphical Abstract

Funder

Ministerio de Ciencia e Innovación

Agaur

Engineering and Physical Sciences Research Council

GlaxoSmithKline

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3