Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9

Author:

Jin Huihui,Liu Tianqing,Sun Dan

Abstract

AbstractStudies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS “hot spot” formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9–aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis. Graphical Abstract

Funder

National Health and Medical Research Council

Western Sydney University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3