Abstract
AbstractThe cornerstone of nanomaterial-based sensing systems is the synthesis of nanoparticles with appropriate surface functionalization that ensures their stability and determines their reactivity with organic or inorganic analytes. To accomplish these requirements, various compounds are used as additives or growth factors to regulate the properties of the synthesized nanoparticles and their reactivity with the target analytes. A different rationale is to use the target analytes as additives or growth agents to control the formation and properties of nanoparticles. The main difference is that the analyte recognition event occurs before or during the formation of nanoparticles and it is based on the reactivity of the analytes with the precursor materials of the nanoparticles (e.g., metal ions, reducing agents, and coatings). The transition from the ionic (or molecular) state of the precursor materials to ordered nanostructured assemblies is used for sensing and signal transduction for the qualitative detection and the quantitative determination of the target analytes, respectively. This review focuses on assays that are based on analyte-mediated regulation of nanoparticles’ formation and differentiate them from standard nanoparticle-based assays which rely on pre-synthesized nanoparticles. Firstly, the principles of analyte-mediated nanomaterial sensors are described and then they are discussed with emphasis on the sensing strategies, the signal transduction mechanisms, and their applications. Finally, the main advantages, as well as the limitations of this approach, are discussed and compared with assays that rely on pre-synthesized nanoparticles in order to highlight the major advances accomplished with this type of nano-sensors and elucidate challenges and opportunities for further evolving new nano-sensing strategies.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献