Electrospun cobalt-doped 2D-MoSe2/polypyrrole hybrid-based carbon nanofibers as electrochemical sensing platforms

Author:

Celik Cogal GamzeORCID,Cogal Sadik,Machata Peter,Uygun Oksuz Aysegul,Omastová Maria

Abstract

AbstractA novel cobalt-doped two-dimensional molybdenum diselenide/polypyrrole hybrid-based carbon nanofiber (Co/MoSe2/PPy@CNF) was prepared using the hydrothermal method followed by electrospinning technique. The structural and morphological properties of the 2D-TMD@CNF-based hybrids were characterized through X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and transmission electron microscopy (TEM). The Co-MoSe2/PPy@CNF exhibited large surface area, porous structure, and improved active sites due to the synergistic effect of the components. The electrochemical and electrocatalytic characteristics of the 2D-TMD@CNF-modified electrodes were also investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The Co/MoSe2/PPy@CNF electrode was used as an electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) and showed enhanced catalytic activity and sensitivity. Using DPV measurements, the Co/MoSe2/PPy@CNF demonstrated wide linear ranges of 30–3212 μM for AA, 1.2–536 μM for DA, and 10–1071 μM for UA with low detection limits of 6.32, 0.45, and 0.81 μM, respectively. The developed sensor with the Co/MoSe2/PPy@CNF-modified electrode was also applied to a human urine sample and gave recoveries ranging from 94.0 to 105.5% (n = 3) for AA, DA, and UA. Furthermore, the Co/MoSe2/PPy@CNF-based sensor exhibited good selectivity and reproducibility for the detection of AA, DA, and UA. Graphical abstract

Funder

Slovenská Akadémia Vied

Süleyman Demirel Üniversitesi

Slovak Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3