Optimised graphite/carbon black loading of recycled PLA for the production of low-cost conductive filament and its application to the detection of β-estradiol in environmental samples

Author:

Augusto Karen K. L.,Crapnell Robert D.,Bernalte Elena,Zighed Sabri,Ehamparanathan Anbuchselvan,Pimlott Jessica L.,Andrews Hayley G.,Whittingham Matthew J.,Rowley-Neale Samuel J.,Fatibello-Filho Orlando,Banks Craig E.ORCID

Abstract

AbstractThe production, optimisation, physicochemical, and electroanalytical characterisation of a low-cost electrically conductive additive manufacturing filament made with recycled poly(lactic acid) (rPLA), castor oil, carbon black, and graphite (CB-G/PLA) is reported. Through optimising the carbon black and graphite loading, the best ratio for conductivity, low material cost, and printability was found to be 60% carbon black to 40% graphite. The maximum composition within the rPLA with 10 wt% castor oil was found to be an overall nanocarbon loading of 35 wt% which produced a price of less than £0.01 per electrode whilst still offering excellent low-temperature flexibility and reproducible printing. The additive manufactured electrodes produced from this filament offered excellent electrochemical performance, with a heterogeneous electron (charge) transfer rate constant, k0 calculated to be (2.6 ± 0.1) × 10−3 cm s−1 compared to (0.46 ± 0.03) × 10−3 cm s−1 for the commercial PLA benchmark. The additive manufactured electrodes were applied to the determination of β-estradiol, achieving a sensitivity of 400 nA µM−1, a limit of quantification of 70 nM, and a limit of detection of 21 nM, which compared excellently to other reports in the literature. The system was then applied to the detection of ß-estradiol within four real water samples, including tap, bottled, river, and lake water, where recoveries between 95 and 109% were obtained. Due to the ability to create high-performance filament at a low material cost (£0.06 per gram) and through the use of more sustainable materials such as recycled polymers, bio-based plasticisers, and naturally occurring graphite, additive manufacturing will have a permanent place within the electroanalysis arsenal in the future. Graphical abstract

Funder

Engineering and Physical Sciences Research Council

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

DEVCOM Army Research Laboratory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3