Author:
Tataria Harsh,Haneda Katsuyuki,Molisch Andreas F.,Shafi Mansoor,Tufvesson Fredrik
Abstract
AbstractPropagation models constitute a fundamental building block of wireless communications research. Before we build and operate real systems, we must understand the science of radio propagation, and develop channel models that both reflect the important propagation processes and allow a fair comparison of different systems. In the past five decades, wireless systems have gone through five generations, from supporting voice applications to enhanced mobile broadband. To meet the ever increasing data rate demands of wireless systems, frequency bands covering a wide range from 800 MHz to 100 GHz have been allocated for use. The standardization of these systems started in the early/mid 1980s in Europe by the European Telecommunications Standards Institute with the advent of Global System for Mobile Communications. This motivated the development of the first standardized propagation model by the European Cooperation in Science and Technology (COST) 207 working group. These standardization activities were continued and expanded for the third, fourth, and fifth generations of COST, as well as by the Third Generation Partnership Project, and the International Telecommnunication Union. This paper presents a historical overview of the standardized propagation models covering first to fifth-generation systems. In particular, we discuss the evolution and standardization of pathloss models, as well as large and small-scale fading parameters for single antenna and multiple antenna systems. Furthermore, we present insights into the progress of deterministic modelling across the five generations of systems, as well as discuss more advanced modelling components needed for the detailed simulations of millimeter-wave channels. A comprehensive bibliography at the end of the paper will aid the interested reader to dig deeper.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture
Reference102 articles.
1. A. Aontinou, On the roots of wireless communications, IEEE Circuits Syst Mag, Vol. 11, No. 1, pp. 14–25, 2011.
2. L. J. Greenstein, “One hundred years of radio,” Presentation at the Centenary of Radio, Sept. 1999, Redbank NJ, USA, Available online at http://www.winlab.rutgers.edu/archive/Marconi%20Day/Greenstein.pdf.
3. A. J. Goldsmith, et al., In memory of Larry Greenstein, prominent wireless researcher and ComSoc volunteer, IEEE Commun. Mag., Vol. 56, No. 10, pp. 12–13, 2018.
4. 3GPP TR 36.104 Technical specification of radio access network: Base station radio transmission and reception. 2019.
5. D. C. Cox, et al., Correlation bandwidth and delay spread multipath propagation statistics for 920 MHz urban mobile radio channels, IEEE Trans. Commun., Vol. 23, No. 11, pp. 1271–1280, 1975.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献