Advanced computational model of rod ERG kinetics

Author:

Tyler Christopher W.ORCID

Abstract

Abstract Purpose The electroretinogram (ERG) is the summed response from all levels of the retinal processing of light, and exhibits several profound nonlinearities in the underlying processing pathways. Accurate computational models of the ERG are important, both for understanding the multifold processes of light transduction to ecologically useful signals by the retina, and for their diagnostic capabilities for the identification and characterization of retinal disease mechanisms. There are, however, very few computational models of the ERG waveform, and none that account for the full extent of its features over time. Methods This study takes the neuroanalytic approach to modeling the ERG waveform, defined as a computational model based on the main features of the transmitter kinetics of the retinal neurons. Results The present neuroanalytic model of the human rod ERG is elaborated from the same general principles as that of Hood and Birch (Vis Neurosci 8(2):107–126, 1992), but incorporates the more recent understanding of the early nonlinear stages of ERG generation by Robson and Frishman (Prog Retinal Eye Res 39:1–22, 2014). As a result, it provides a substantially better match than previous models of rod responses in six different waveform features of the ERG flash intensity series on which the Hood and Birch model was based. Conclusion The neuroanalytic approach extends previous models of the component waves of the ERG, and can be structured to provide an accurate characterization of the full timecourse of the ERG waveform. The approach thus holds promise for advancing the theoretical understanding of the retinal kinetics of the light response.

Funder

National Eye Institute, NIH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3