Abstract
Abstract
Objective
To compare mfERG recordings with the Dawson–Trick–Litzkow (DTL) and gold cup skin electrode in healthy young and old adults and to test the sensitivity of both electrodes to age-related changes in the responses.
Methods
Twenty participants aged 20–27 years (“young”) and 20 participants aged 60–75 (“old”) with a visual acuity of ≤ 0 logMAR were included. The mfERG responses were recorded simultaneously using DTL and skin electrodes. P1 amplitudes, peak times and signal-to-noise ratios (SNRs) were compared between both electrodes and across age groups, and correlation analyses were performed. The electrode’s performance in discriminating between age groups was assessed via area under curve (AUC) of receiver operating characteristics.
Results
Both electrodes reflected the typical waveform of mfERG recordings. For the skin electrode, however, P1 amplitudes were significantly reduced (p < 0.001; reduction by over 70%), P1 peak times were significantly shorter (p < 0.001; by approx. 1.5 ms), and SNRs were reduced [(p < 0.001; logSNR ± SEM DTL young (old) vs gold cup: 0.79 ± 0.13 (0.71 ± 0.15) vs 0.37 ± 0.15 (0.34 ± 0.13)]. All mfERG components showed strong significant correlations (R2 ≥ 0.253, p < 0.001) between both electrodes for all eccentricities. Both electrodes allowed for the identification of age-related P1 changes, i.e., P1-amplitude reduction and peak-time delay in the older group. There was a trend to higher AUC for the DTL electrode to delineate these differences between age groups, which, however, failed to reach statistical significance.
Conclusions
Both electrode types enable successful mfERG recordings. However, in compliant patients, the use of the DTL electrode appears preferable due to the larger amplitudes, higher signal-to-noise ratio and its better reflection of physiological changes, i.e., age effects. Nevertheless, skin electrodes appear a viable alternative for mfERG recordings in patients in whom the use of corneal electrodes is precluded, e.g., children and disabled patients.
Funder
Deutsche Forschungsgemeinschaft
Otto-von-Guericke-Universität Magdeburg
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Sensory Systems,Ophthalmology