1. Agirrezabal, M., Alegria, I., & Hulden, M. (2016). Machine learning for metrical analysis of englishpoetry. In Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers (pp. 772–781).
2. Cakr, E., Parascandolo, G., Heittola, T., Huttunen, H., & Virtanen, T. (2017). Convolutional recurrent neural networks for polyphonic sound event detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(6), 1291–1303.
3. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., & Bougares, F. (2014). Schwenk,H.: Learning phrase representation using RNN encoder-decoder for machine translation,computation and language. Retrieved from arXiv:1406.1078
4. Christian, O., Winfried, M., Martin, K., Tim, R., Maren, S., Sascha, O., & Sonja, A. K. (2013). Aesthetic and emotional effects of meter and rhyme in poetry. Frontiers in Psychology, 4, 1–10.
5. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neuronal networks on sequence modeling, neuronal and evolutionary computing. Retrieved from arXiv:1412.3555