Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics
Reference20 articles.
1. Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 238–247. https://doi.org/10.3115/v1/P14-1023.
2. Brun, C., & Hagege, C. (2013). Suggestion mining: Detecting suggestions for improvement in users’ comments. Research in Computing Science, 70(79.7179), 31–41. http://www.rcs.cic.ipn.mx/rcs/2013_70/Suggestion.
3. Dong, L., Wei, F., Duan, Y., Liu, X., Zhou, M., & Xu, K. (2013). The automated acquisition of suggestions from tweets. Twenty-Seventh AAAI Conference on Artificial Intelligence.
4. Farahani, M., Gharachorloo, M., Farahani, M., & Manthouri, M. (2021). ParsBERT: Transformer-based Model for Persian Language understanding. Neural Processing Letters, 53(6), 3831–3847. https://doi.org/10.1007/s11063-021-10528-4.
5. Leekha, M., Goswami, M., & Jain, M. (2020). A Multi-task Approach to Open Domain Suggestion Mining using Language Model for text Over-Sampling. In J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (pp. 223–229). Springer International Publishing.