NewsCom-TOX: a corpus of comments on news articles annotated for toxicity in Spanish

Author:

Taulé MarionaORCID,Nofre Montserrat,Bargiela Víctor,Bonet Xavier

Abstract

AbstractIn this article, we present the NewsCom-TOX corpus, a new corpus manually annotated for toxicity in Spanish. NewsCom-TOX consists of 4359 comments in Spanish posted in response to 21 news articles on social media related to immigration, in order to analyse and identify messages with racial and xenophobic content. This corpus is multi-level annotated with different binary linguistic categories -stance, target, stereotype, sarcasm, mockery, insult, improper language, aggressiveness and intolerance- taking into account not only the information conveyed in each comment, but also the whole discourse thread in which the comment occurs, as well as the information conveyed in the news article, including their images. These categories allow us to identify the presence of toxicity and its intensity, that is, the level of toxicity of each comment. All this information is available for research purposes upon request. Here we describe the NewsCom-TOX corpus, the annotation tagset used, the criteria applied and the annotation process carried out, including the inter-annotator agreement tests conducted. A quantitative analysis of the results obtained is also provided. NewsCom-TOX is a linguistic resource that will be valuable for both linguistic and computational research in Spanish in NLP tasks for the detection of toxic information.

Funder

Compagnia di San Paolo

agència de gestió d’ajuts universitaris i de recerca

Ministerio de Ciencia e Innovación

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

Reference55 articles.

1. Abercrombie, G., Basile, V., Tonelli, S., Rieser, V., & Uma, A. (2022). (eds) Proceedings of the 1st Workshop on Perspectivist Approaches to NLP @LREC2022, European Language Resources Association, Marseille, France,https://aclanthology.org/2022.nlperspectives-1.0.

2. Akhtar, S., Basile, V., & Patti, V. (2021). Whose opinions matter? perspective-aware models to identify opinions of hate speech victims in abusive language detection. arXiv preprintarXiv:2106.15896.

3. Allport, G. (1954). The nature of prejudice. Doubleday.

4. Álvarez-Carmona, MÁ., Guzmán-Falcón, E., Montes-Gómez, M., Escalante, H. J., Villasenor-Pineda, L., Reyes-Meza, V., & Rico-Sulayes, A. (2018). Overview of mex-a3t at ibereval 2018: Authorship and aggressiveness analysis in mexican spanish tweets. In: Notebook papers of 3rd SEPLN workshop on Evaluation of human language technologies for Iberian languages (IberEVAL), Seville, Spain, vol 6.

5. Aragón, M. E., Jarquín-Vásquez, H. J., Montes-Gómez, M., Escalante, H.J., Pineda, L.V., Gómez-Adorno, H., Posadas-Durán, J.P., & Bel-Enguix, G. (2020). Overview of mex-a3t at iberlef 2020: Fake news and aggressiveness analysis in mexican spanish. In: IberLEF@ SEPLN, pp 222–235.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3