1. Abdul-Mageed, M., & Diab, M. (2012). AWATIF: A multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis. In Proc. 8th Int. Conf. Lang. Resour. Eval. Lr. 2012, no. April 2015 (pp. 3907–3914).
2. Abdul-Mageed, M., & Diab, M. T. (2014). SANA: ‘A large scale multi-genre, multi-dialect lexicon for Arabic subjectivity and sentiment analysis’. In Proceedings of the Language Resources and Evaluation Conference (LREC), pages 1162–1169, Reykjavik,
Iceland.
3. Abdul-Mageed, M., Elmadany, A., & Nagoudi, E. M. B. (2020). ARBERT & MARBERT: Deep bidirectional transformers for Arabic. arXiv preprint arXiv:2101.01785.
4. Abdul-Mageed, M., Korayem, M., & YoussefAgha, A. (2011). “Yes we can?”: Subjectivity annotation and tagging for the health domain. In Proceedings of RANLP2011.
5. Al Katat, S., et al. (2024). Natural language processing for Arabic sentiment analysis: A systematic literature review. IEEE Transactions on Big Data, 1, 1–18.