Roman Urdu toxic comment classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics
Link
https://link.springer.com/content/pdf/10.1007/s10579-021-09530-y.pdf
Reference54 articles.
1. Agrawal, S., & Awekar, A. (2018). Deep learning for detecting cyberbullying across multiple social media platforms. In Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings, pp. 141–153. https://doi.org/10.1007/978-3-319-76941-7_11
2. van Aken, B., Risch, J., Krestel, R., & Löser, A. (2018). Challenges for toxic comment classification: An in-depth error analysis. In Proceedings of the 2nd Workshop on Abusive Language Online, ALW@EMNLP 2018. Brussels, Belgium, October 31, 2018, pp. 33–42 (2018). https://aclanthology.info/papers/W18-5105/w18-5105
3. Al-garadi, M. A., Varathan, K. D., & Ravana, S. D. (2016). Cybercrime detection in online communications: The experimental case of cyberbullying detection in the twitter network. Computers in Human Behavior, 63, 433–443. https://doi.org/10.1016/j.chb.2016.05.051.
4. Albadi, N., Kurdi, M., & Mishra, S. (2018). Are they our brothers? analysis and detection of religious hate speech in the arabic twittersphere. In U. Brandes, C. Reddy, A. Tagarelli (Eds.), IEEE/ACM 2018 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2018. Barcelona, Spain, August 28-31, 2018, pp. 69–76. IEEE Computer Society (2018). https://doi.org/10.1109/ASONAM.2018.8508247.
5. Ameer, I., Siddiqui, M. H.F ., Sidorov, G., & Gelbukh, A. F. (2019). CIC at semeval-2019 task 5: Simple yet very efficient approach to hate speech detection, aggressive behavior detection, and target classification in twitter. In J. May, E. Shutova, A. Herbelot, X. Zhu, M. Apidianaki, S. M. Mohammad (Eds.) Proceedings of the 13th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2019. Minneapolis, MN, USA, June 6–7, 2019, pp. 382–386. Association for Computational Linguistics (2019). https://aclweb.org/anthology/papers/S/S19/S19-2067/
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assamese Toxic Comment Detection On Social Media Using Machine Learning Methods;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22
2. Hate Speech Detection in Roman Urdu using Machine Learning Techniques;2024 5th International Conference on Advancements in Computational Sciences (ICACS);2024-02-19
3. Hate Speech and Target Community Detection in Nastaliq Urdu Using Transfer Learning Techniques;IEEE Access;2024
4. Abusive Language Detection in Urdu Text: Leveraging Deep Learning and Attention Mechanism;IEEE Access;2024
5. A Machine Learning Approach for Moderating Toxic Hinglish Comments of YouTube Videos;Lecture Notes in Networks and Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3