Automatic construction of direction-aware sentiment lexicon using direction-dependent words

Author:

Park Jihye,Lee Hye Jin,Cho Sungzoon

Abstract

AbstractExplainability, which is the degree to which an interested stakeholder can understand the key factors that led to a data-driven model’s decision, has been considered an essential consideration in the financial domain. Accordingly, lexicons that can achieve reasonable performance and provide clear explanations to users have been among the most popular resources in sentiment-based financial forecasting. Since deep learning-based techniques have limitations in that the basis for interpreting the results is unclear, lexicons have consistently attracted the community’s attention as a crucial tool in studies that demand explanations for the sentiment estimation process. One of the challenges in the construction of a financial sentiment lexicon is the domain-specific feature that the sentiment orientation of a word can change depending on the application of directional expressions. For instance, the word “cost” typically conveys a negative sentiment; however, when the word is juxtaposed with “decrease” to form the phrase “cost decrease,” the associated sentiment is positive. Several studies have manually built lexicons containing directional expressions. However, they have been hindered because manual inspection inevitably requires intensive human labor and time. In this study, we propose to automatically construct the “sentiment lexicon composed of direction-dependent words,” which expresses each term as a pair consisting of a directional word and a direction-dependent word. Experimental results show that the proposed sentiment lexicon yields enhanced classification performance, proving the effectiveness of our method for the automated construction of a direction-aware sentiment lexicon.

Funder

National Research Foundation of Korea

Seoul National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3