Semi-automatic construction of word-formation networks

Author:

Lango MateuszORCID,Žabokrtský Zdeněk,Ševčíková Magda

Abstract

AbstractThe article presents a semi-automatic method for the construction of word-formation networks focusing particularly on derivation. The proposed approach applies a sequential pattern mining technique to construct useful morphological features in an unsupervised manner. The features take the form of regular expressions and later they are used to feed a machine-learned ranking model. The network is constructed by applying the learned model to sort the lists of possible base words and selecting the most probable ones. This approach, besides relatively small training set and a lexicon, does not require any additional language resources such as a list of vowel and consonant alternations, part-of-speech tags etc. The proposed approach is evaluated on lexeme sets of four languages, namely Polish, Spanish, Czech, and French. The conducted experiments demonstrate the ability of the proposed method to construct linguistically adequate word-formation networks from small training sets. Furthermore, the performed feasibility study shows that the method can further benefit from the interaction with a human language expert within the active learning framework.

Funder

Grantová Agentura C(eské Republiky

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference60 articles.

1. Apresjan, J., Boguslavsky, I., Iomdin, B., Iomdin, L., Sannikov, A., & Sizov V. (2006). A syntactically and semantically tagged corpus of Russian: state of the art and prospects. In Proceedings of the 5th international conference on language resources and evaluation (LREC 2006), pp. 1378–1381.

2. Baayen, H., Piepenbrock, R., & Gulikers, L. (1996). CELEX 2. CD-ROM, linguistic data consortium, LDC Catalog No.: LDC96L14, Philadelphia.

3. Balvet, A., Barque, L., & Marín, R. (2010). Building a lexicon of French deverbal nouns from a semantically annotated corpus. In Proceedings of the 7th international conference on language resources and evaluation (LREC 2010), pp. 1408–1413.

4. Baranes, M., & Sagot, B. (2014). A language-independent approach to extracting derivational relations from an inflectional lexicon. In Proceedings of the 9th international conference on language resources and evaluation (LREC 2014), pp. 2793–2799.

5. Bonami, O., & Strnadová, J. (2018). Paradigm structure and predictability in derivational morphology. Morphology. https://doi.org/10.1007/s11525-018-9322-6.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Swedish word family resource;ITL - International Journal of Applied Linguistics;2024-02-26

2. Sieć powiązań derywacyjnych na materiale Słownika gramatycznego języka polskiego;LingVaria;2023-11-14

3. Transferring Word-Formation Networks Between Languages;Prague Bulletin of Mathematical Linguistics;2023-04

4. Enhancing Derivational Information on Latin Lemmas in the LiLa Knowledge Base. A Structural and Diachronic Extension;Prague Bulletin of Mathematical Linguistics;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3