SENTiVENT: enabling supervised information extraction of company-specific events in economic and financial news

Author:

Jacobs GillesORCID,Hoste VéroniqueORCID

Abstract

AbstractWe present SENTiVENT, a corpus of fine-grained company-specific events in English economic news articles. The domain of event processing is highly productive and various general domain, fine-grained event extraction corpora are freely available but economically-focused resources are lacking. This work fills a large need for a manually annotated dataset for economic and financial text mining applications. A representative corpus of business news is crawled and an annotation scheme developed with an iteratively refined economic event typology. The annotations are compatible with benchmark datasets (ACE/ERE) so state-of-the-art event extraction systems can be readily applied. This results in a gold-standard dataset annotated with event triggers, participant arguments, event co-reference, and event attributes such as type, subtype, negation, and modality. An adjudicated reference test set is created for use in annotator and system evaluation. Agreement scores are substantial and annotator performance adequate, indicating that the annotation scheme produces consistent event annotations of high quality. In an event detection pilot study, satisfactory results were obtained with a macro-averaged $$F_1$$ F 1 -score of $$59\%$$ 59 % validating the dataset for machine learning purposes. This dataset thus provides a rich resource on events as training data for supervised machine learning for economic and financial applications. The dataset and related source code is made available at https://osf.io/8jec2/.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3