Fine-tuning language models to recognize semantic relations

Author:

Roussinov DmitriORCID,Sharoff Serge,Puchnina Nadezhda

Abstract

AbstractTransformer-based pre-trained Language Models (PLMs) have emerged as the foundations for the current state-of-the-art algorithms in most natural language processing tasks, in particular when applied to context rich data such as sentences or paragraphs. However, their impact on the tasks defined in terms of abstract individual word properties, not necessary tied to their specific use in a particular sentence, has been inadequately explored, which is a notable research gap. Addressing this gap is crucial for advancing our understanding of natural language processing. To fill this void, we concentrate on classification of semantic relations: given a pair of concepts (words or word sequences) the aim is to identify the semantic label to describe their relationship. E.g. in the case of the pair green/colour, “is a” is a suitable relation while “part of”, “property of”, and “opposite of” are not suitable. This classification is independent of a particular sentence in which these concepts might have been used. We are first to incorporate a language model into both existing approaches to this task, namely path-based and distribution-based methods. Our transformer-based approaches exhibit significant improvements over the state-of-the-art and come remarkably close to achieving human-level performance on rigorous benchmarks. We are also first to provide evidence that the standard datasets over-state the performance due to the effect of “lexical memorisation.” We reduce this effect by applying lexical separation. On the new benchmark datasets, the algorithmic performance remains significantly below human-level, highlighting that the task of semantic relation classification is still unresolved, particularly for language models of the sizes commonly used at the time of our study. We also identify additional challenges that PLM-based approaches face and conduct extensive ablation studies and other experiments to investigate the sensitivity of our findings to specific modelling and implementation choices. Furthermore, we examine the specific relations that pose greater challenges and discuss the trade-offs between accuracy and processing time.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3