A pragmatic guide to geoparsing evaluation

Author:

Gritta MilanORCID,Pilehvar Mohammad Taher,Collier Nigel

Abstract

Abstract Empirical methods in geoparsing have thus far lacked a standard evaluation framework describing the task, metrics and data used to compare state-of-the-art systems. Evaluation is further made inconsistent, even unrepresentative of real world usage by the lack of distinction between the different types of toponyms, which necessitates new guidelines, a consolidation of metrics and a detailed toponym taxonomy with implications for Named Entity Recognition (NER) and beyond. To address these deficiencies, our manuscript introduces a new framework in three parts. (Part 1) Task Definition: clarified via corpus linguistic analysis proposing a fine-grained Pragmatic Taxonomy of Toponyms. (Part 2) Metrics: discussed and reviewed for a rigorous evaluation including recommendations for NER/Geoparsing practitioners. (Part 3) Evaluation data: shared via a new dataset called GeoWebNews to provide test/train examples and enable immediate use of our contributions. In addition to fine-grained Geotagging and Toponym Resolution (Geocoding), this dataset is also suitable for prototyping and evaluating machine learning NLP models.

Funder

Natural Environment Research Council

Medical Research Council

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference100 articles.

1. Abdelkader, A., Hand, E., & Samet, H. (2015). Brands in newsstand: Spatio-temporal browsing of business news. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 97). New York: ACM.

2. Acheson, E., De Sabbata, S., & Purves, R. S. (2017). A quantitative analysis of global gazetteers: Patterns of coverage for common feature types. Computers, Environment and Urban Systems, 64, 309–320.

3. Al-Olimat, H. S., Thirunarayan, K., Shalin, V., & Sheth, A. (2017). Location name extraction from targeted text streams using gazetteer-based statistical language models. arXiv preprint arXiv:1708.03105.

4. Allen, T., Murray, K. A., Zambrana-Torrelio, C., Morse, S. S., Rondinini, C., Di Marco, M., et al. (2017). Global hotspots and correlates of emerging zoonotic diseases. Nature communications, 8(1), 1124.

5. Alonso, H. M., Pedersen, B. S., & Bel, N. (2013). Annotation of regular polysemy and underspecification. In Proceedings of the 51st annual meeting of the association for computational linguistics (volume 2: Short Papers) (vol. 2, pp. 725–730).

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3