FinnSentiment: a Finnish social media corpus for sentiment polarity annotation

Author:

Lindén KristerORCID,Jauhiainen Tommi,Hardwick Sam

Abstract

AbstractSentiment analysis and opinion mining are essential tasks with many prominent application areas, e.g., when researching popular opinions on products or brands. Sentiments expressed in social media can be used in brand name monitoring and indicating fake news. In our survey of previous work, we note that there is no large-scale social media data set with sentiment polarity annotations for Finnish. This publication aims to remedy this shortcoming by introducing a 27,000-sentence data set annotated independently with sentiment polarity by three native annotators. We had three annotators annotate the whole data set, which provides a unique opportunity for further studies of annotator behavior over the sample annotation order. We analyze their inter-annotator agreement and provide two baselines to validate the usefulness of the data set.

Funder

Academy of Finland

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference79 articles.

1. Abdul-Mageed, M., & Ungar, L. (2017). Emonet: Fine-grained emotion detection with gated recurrent neural networks. In Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 718–728).

2. Abdulla, N. A., Al-Ayyoub, M., & Al-Kabi, M. N. (2014). An extended analytical study of arabic sentiments. International Journal of Big Data Intelligence, 1(1–2), 103–113.

3. Aller Media Ltd. (2019). The Suomi24 sentences corpus 2001–2017, Korp version 1.1. Retrieved from http://urn.fi/urn:nbn:fi:lb-2020021803.

4. Alonso, M. A., Vilares, D., Gómez-Rodríguez, C., & Vilares, J. (2021). Sentiment analysis for fake news detection. Electronics, 10(11), 1348.

5. Apidianaki, M., Tannier, X., & Richart, C. (2016). Datasets for aspect-based sentiment analysis in French. In Proceedings of the tenth international conference on language resources and evaluation (LREC 2016) European Language Resources Association (ELRA), Paris, France.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3