1. Afzal, Z., Pons, E., Kang, N., Sturkenboom, M. C., Schuemie, M. J., & Kors, J. A. (2014). Contextd: An algorithm to identify contextual properties of medical terms in a dutch clinical corpus. BMC Bioinformatics, 15(1), 1.
2. Banjade, R., & Rus, V. (2016). Dt-neg: Tutorial dialogues annotated for negation scope and focus in context. In Chair NCC, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of the tenth international conference on language resources and evaluation (LREC 2016), European Language Resources Association (ELRA), Paris, France.
3. Blanco, E., & Moldovan, D. (2014). Retrieving implicit positive meaning from negated statements. Natural Language Engineering, 20(04), 501–535.
4. Bokharaeian, B., Diaz, A., Neves, M., & Francisco, V. (2014). Exploring negation annotations in the drugddi corpus. In Fourth workshop on building and evaluating resources for health and biomedical text processing (BIOTxtM 2014), Citeseer.
5. Councill, IG., McDonald, R., & Velikovich, L. (2010). What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis. In Proceedings of the workshop on negation and speculation in natural language processing, Association for Computational Linguistics, (pp. 51–59).