The limitations of irony detection in Dutch social media

Author:

Maladry Aaron,Lefever Els,Van Hee Cynthia,Hoste Véronique

Abstract

AbstractIn this paper, we explore the feasibility of irony detection in Dutch social media. To this end, we investigate both transformer models with embedding representations, as well as traditional machine learning classifiers with extensive feature sets. Our feature-based methodology implements a variety of information sources including lexical, semantic, syntactic, sentiment features, as well as two new data-driven features to model common sense. Based on patterns in the syntactic structure of tweets, we aim to model the presence of contrasting sentiments, a phenomenon that is known to be indicative of verbal irony and sarcasm. Feature selection, as well as voting ensemble techniques were implemented to enhance the classification performance. The final systems reach F1-scores up to 0.79, which are promising results for a task as difficult as irony detection. Besides a quantitative analysis, this paper also describes a thorough qualitative analysis of the system output. Although lexical cues appear to be very important to express irony, our analysis also revealed the need for more advanced modeling of common-sense knowledge to detect more subtle examples of irony.

Funder

Universiteit Gent

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3