RUN-AS: a novel approach to annotate news reliability for disinformation detection

Author:

Bonet-Jover AlbaORCID,Sepúlveda-Torres Robiert,Saquete Estela,Martínez-Barco Patricio,Nieto-Pérez Mario

Abstract

AbstractThe development of the internet and digital technologies has inadvertently facilitated the huge disinformation problem that faces society nowadays. This phenomenon impacts ideologies, politics and public health. The 2016 US presidential elections, the Brexit referendum, the COVID-19 pandemic and the Russia-Ukraine war have been ideal scenarios for the spreading of fake news and hoaxes, due to the massive dissemination of information. Assuming that fake news mixes reliable and unreliable information, we propose RUN-AS (Reliable and Unreliable Annotation Scheme), a fine-grained annotation scheme that enables the labelling of the structural parts and essential content elements of a news item and their classification into Reliable and Unreliable. This annotation proposal aims to detect disinformation patterns in text and to classify the global reliability of news. To this end, a dataset in Spanish was built and manually annotated with RUN-AS and several experiments using this dataset were conducted to validate the annotation scheme by using Machine Learning (ML) and Deep Learning (DL) algorithms. The experiments evidence the validity of the annotation scheme proposed, obtaining the best $$\textbf F_\textbf 1\textbf m$$ F 1 m , 0.948, with the Decision Tree algorithm.

Funder

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Ciencia e Innovación

Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3