An efficient any language approach for the integration of phrases in document retrieval

Author:

Doucet Antoine,Ahonen-Myka Helena

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference16 articles.

1. Ahonen-Myka, H. (1999). Finding all frequent maximal sequences in text. In D. Mladenic & M. Grobelnik (Eds.), Proceedings of the 16th international conference on machine learning ICML-99 workshop on machine learning in text data analysis, Ljubljana, Slovenia, pp. 11–17.

2. Ahonen-Myka, H., & Doucet, A. (2005). Data mining meets collocations discovery. In Inquiries into words, constraints and contexts, pp. 194–203.

3. Doucet, A., & Ahonen-Myka, H. (2004). Non-contiguous word sequences for information retrieval. In Proceedings of ACL-2004, workshop on multiword expressions: Integrating processing. Barcelona, Spain, pp. 88–95.

4. Doucet, A., & Ahonen-Myka, H. (2006). Fast extraction of discontiguous sequences in text: A new approach based on maximal frequent sequences. In Proceedings of IS-LTC 2006, information society—language technologies conference. Ljubljana, Slovenia, pp. 186–191.

5. Fagan, J. L. (1989). The effectiveness of a nonsyntactic approach to automatic phrase indexing for document retrieval. Journal of the American Society for Information Science, 40, 115–132.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Feature Sets for Document Specific Key-Phrase Extraction;Cybernetics and Systems;2022-04-01

2. A Topic Detection Method Based on Word-attention Networks;Journal of Data and Information Science;2021-08-18

3. Diverse feature set based Keyphrase extraction and indexing techniques;Multimedia Tools and Applications;2020-09-26

4. A novel model for phrase searching based-on Minimum Weighted Relocation Model;Signal and Data Processing;2019-03-01

5. The concept of frequent itemset mining for text;IOP Conference Series: Materials Science and Engineering;2018-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3