AC-IQuAD: Automatically Constructed Indonesian Question Answering Dataset by Leveraging Wikidata

Author:

Doxolodeo Kerenza,Krisnadhi Adila Alfa

Abstract

AbstractConstructing a question-answering dataset can be prohibitively expensive, making it difficult for researchers to make one for an under-resourced language, such as Indonesian. We create a novel Indonesian Question Answering dataset that is produced automatically end-to-end. The process uses Context Free Grammar, the Wikipedia Indonesian Corpus, and the concept of the proxy model. The dataset consists of 134 thousand simple questions and 60 thousand complex questions. It achieved competitive grammatical and model accuracy compared to the translated dataset but suffers from some issues due to resource constraints.

Funder

Universitas Indonesia

Publisher

Springer Science and Business Media LLC

Reference21 articles.

1. Carrino, C. P., Costa-jussà, M. R., & Fonollosa, J. A. R. (2020). Automatic spanish translation of squad dataset for multi-lingual question answering. In N. Calzolari, F. Béchet, & P. Blache, et al (Eds.), Proceedings of the 12th language resources and evaluation conference, LREC 2020, May 11–16, 2020 (pp. 5515–5523). European Language Resources Association. https://aclanthology.org/2020.lrec-1.677/

2. Clark, J. H., Palomaki, J., Nikolaev, V., et al. (2020). Tydi QA: A benchmark for information-seeking question answering in typologically diverse languages. Transactions of the Association for Computational Linguistics, 8, 454–470. https://doi.org/10.1162/tacl_a_00317

3. Devlin, J., Chang, M., & Lee, K. et al. (2019). BERT: pre-training of deep bidirectional transformers for language understanding. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: Human language technologies, NAACL-HLT 2019, June 2–7, 2019 (Vol. 1, (Long and Short Papers), pp. 4171–4186). Association for Computational Linguistics. https://doi.org/10.18653/v1/n19-1423

4. Dubey, M., Banerjee, D., & Abdelkawi, A. et al (2019). Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia. In: Ghidini C, Hartig O, Maleshkova M, et al. (Eds.), The semantic web—ISWC 2019—18th international semantic web conference, October 26–30, 2019, Proceedings, Part II, Lecture Notes in Computer Science (Vol. 11779, pp. 69–78). Springer. https://doi.org/10.1007/978-3-030-30796-7_5

5. Eyal, M., Baumel, T., & Elhadad, M. (2019). Question answering as an automatic evaluation metric for news article summarization. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: Human language technologies, NAACL-HLT 2019 June 2–7, 2019 (Vol. 1 (Long and Short Papers), pp. 3938–3948). Association for Computational Linguistics. https://doi.org/10.18653/v1/n19-1395

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3