1. Ahmad, S., de Oliveira, P. C. F., & Ahmad, K. (2004). Summarization of multimodal information. In Proceedings of the fourth international conference on language resources and evaluation (LREC), Lisbon, Portugal (pp. 1049–1052). http://www.lrec-conf.org/proceedings/lrec2004/.
2. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., et al. (2017). Text summarization techniques: A brief survey. International Journal of Advanced Computer Science and Applications, 8(10), 397–405. https://doi.org/10.14569/IJACSA.2017.081052.
3. Aone, C., Okurowski, M. E., Gorlinsky, J., & Larsen, B. (1995). A trainable summarizer with knowledge acquired from robust NLP techniques. In I. Mani & M. T. Maybury (Eds.), Advances in automatic text summarization (pp. 68–73). Cambridge, MA: MIT Press.
4. Avinesh, P. V. S., & Meyer, C. M. (2017). Joint optimization of user-desired content in multi-document summaries by learning from user feedback. In Proceedings of the 55th annual meeting of the association for computational linguistics (ACL), Vancouver, BC, Canada (pp. 1353–1363). https://doi.org/10.18653/v1/P17-1124.
5. Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In Proceedings of the international conference on learning representations (ICLR), San Diego, CA, USA. https://arxiv.org/abs/1409.0473.