Live blog summarization

Author:

Avinesh P. V. S.ORCID,Peyrard Maxime,Meyer Christian M.ORCID

Abstract

AbstractLive blogs are an increasingly popular news format to cover breaking news and live events in online journalism. Online news websites around the world are using this medium to give their readers a minute by minute update on an event. Good summaries enhance the value of the live blogs for a reader, but are often not available. In this article, (a) we first define the task of summarizing a live blog, (b) study ways of automatically collecting corpora for live blog summarization, and (c) understand the complexity of the task by empirically evaluating well-known state-of-the-art unsupervised and supervised summarization systems on our new corpus. We show that live blog summarization poses new challenges in the field of news summarization, since frequency and positional signals cannot be used. We make our tools publicly available to reconstruct the corpus and to conduct our empirical experiments. This encourages the research community to build upon and replicate our results.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference100 articles.

1. Ahmad, S., de Oliveira, P. C. F., & Ahmad, K. (2004). Summarization of multimodal information. In Proceedings of the fourth international conference on language resources and evaluation (LREC), Lisbon, Portugal (pp. 1049–1052). http://www.lrec-conf.org/proceedings/lrec2004/.

2. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., et al. (2017). Text summarization techniques: A brief survey. International Journal of Advanced Computer Science and Applications, 8(10), 397–405. https://doi.org/10.14569/IJACSA.2017.081052.

3. Aone, C., Okurowski, M. E., Gorlinsky, J., & Larsen, B. (1995). A trainable summarizer with knowledge acquired from robust NLP techniques. In I. Mani & M. T. Maybury (Eds.), Advances in automatic text summarization (pp. 68–73). Cambridge, MA: MIT Press.

4. Avinesh, P. V. S., & Meyer, C. M. (2017). Joint optimization of user-desired content in multi-document summaries by learning from user feedback. In Proceedings of the 55th annual meeting of the association for computational linguistics (ACL), Vancouver, BC, Canada (pp. 1353–1363). https://doi.org/10.18653/v1/P17-1124.

5. Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In Proceedings of the international conference on learning representations (ICLR), San Diego, CA, USA. https://arxiv.org/abs/1409.0473.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3