1. Aliev, I., De Loera, J.A., Louveaux, Q.: Parametric polyhedra with at least k lattice points: their semigroup structure and the k-Frobenius problem Recent trends in combinatorics. IMA Vol. Math. Appl. 159, 753–778 (2016). (Springer)
2. Assi, A., García-Sánchez, P.A., Ojeda, I.: Frobenius vectors, Hilbert series and gluings of affine semigroups. J. Commut. Algebra 7(3), 317–335 (2015)
3. Beck, M., Robins, S.A.: formula related to the Frobenius problem in two dimensions. Number theory (New York,: 17–23, p. 2004). Springer, New York (2003)
4. Brown, A., Dannenberg, E., Fox, J., Hanna, J., Keck, K., Moore, A., Robbins, Z., Samples, B., Stankewicz, J.: On a generalization of the Frobenius number. J. Integer. Seq. 13(1), 6 (2010). (Article 10.1.4)
5. Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra;DA Cox,2015