1. Ballieu, R.J., Peiffer, K.: Attractivity of the origin for the equation
$$\ddot{x}+f(t, x,\dot{x})\dot{x}^{\alpha }\dot{x}+g(x)=0$$
x
¨
+
f
(
t
,
x
,
x
˙
)
x
˙
α
x
˙
+
g
(
x
)
=
0
. J. Math. Anal. Appl. 65, 321–332 (1978)
2. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath and Co., Boston (1965)
3. Duc, L.H., Ilchmann, A., Siegmund, S., Taraba, P.: On stability of linear time-varying second-order differential equations. Q. Appl. Math. 64, 137–151 (2006)
4. Falconer, K.: Fractal Geometry. Mathematical Fondations and Applications. Wiley, New York (1999)
5. Hartman, P.: Ordinary Differential Equations, Corrected reprint of the second (1982) edition With a foreword by Peter Bates. Classics in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)