Abstract
AbstractIn this paper, we extend the definition of a knotoid to multi-linkoids that consist of a finite number of knot and knotoid components. We study invariants of multi-linkoids, such as the Kauffman bracket polynomial, ordered bracket polynomial, the Kauffman skein module, and the T-invariant in relation with generalized $$\Theta $$
Θ
-graphs.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Adams, C., Devadoss, J., Elhamdadi, M., Mashaghi, A.: Knot theory for proteins: gauss codes, quandles and bondles. J. Math. Chem. 58(8), 1711–1736 (2020)
2. Aicardi, F.: An invariant of colored links via skein relation. Arnold Math. J. 2(2), 159–169 (2016)
3. Barbensi, A., Buck, D., Harrington, H.A., Lackenby, M.: Double branched covers of knotoids. (preprint) (2018). arXiv:1811.09121 [math.GT]
4. Barbensi, A., Goundaroulis, D.: $$f$$-distance of knotoids and protein structure. Proc. Roy. Soc. A 477(2246) (2021)
5. Bartolomew, A.: Knotoids. http://www.layer8.co.uk/maths/knotoids/index.htm (2021)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献