Author:
Li Xiao-Min,Hao Chen-Shuang,Yi Hong-Xun
Abstract
AbstractBy Cartan’s version of Nevanlinna’s theory, we prove the following result: let m and n be two positive integers satisfying $$n\ge 2+m,$$
n
≥
2
+
m
,
let $$p\not \equiv 0$$
p
≢
0
be a polynomial, let $$\eta \ne 0$$
η
≠
0
be a finite complex number, let $$\omega _{1}, \omega _{2}, \ldots , \omega _{m}$$
ω
1
,
ω
2
,
…
,
ω
m
be m distinct finite nonzero complex numbers, and let $$H_{j}$$
H
j
be either exponential polynomials of degree less than q, or an ordinary polynomial in z for $$0\le j\le m$$
0
≤
j
≤
m
, such that $$H_{j}\not \equiv 0$$
H
j
≢
0
for $$1\le j\le m.$$
1
≤
j
≤
m
.
Suppose that $$f\not \equiv \infty $$
f
≢
∞
is a meromorphic solution of the difference equation: $$\begin{aligned} f^n(z)+p(z)f(z+\eta )&=H_0(z)+H_1(z)e^{\omega _{1}z^{q}}+H_2(z)e^{\omega _{2}z^{q}}\\&\quad +\cdots +H_m(z)e^{\omega _{m}z^{q}}, \end{aligned}$$
f
n
(
z
)
+
p
(
z
)
f
(
z
+
η
)
=
H
0
(
z
)
+
H
1
(
z
)
e
ω
1
z
q
+
H
2
(
z
)
e
ω
2
z
q
+
⋯
+
H
m
(
z
)
e
ω
m
z
q
,
such that the hyper-order of f satisfies $$\rho _2(f)<1.$$
ρ
2
(
f
)
<
1
.
Then, f reduces to a transcendental entire function, such that either $$n=m+2$$
n
=
m
+
2
with $$H_0\not \equiv 0$$
H
0
≢
0
and $$\lambda (f)=\rho (f)=q,$$
λ
(
f
)
=
ρ
(
f
)
=
q
,
or $$m=2,$$
m
=
2
,
$$H_0=0$$
H
0
=
0
and: $$\begin{aligned} f(z)=\frac{H_1(z-\eta )e^{\omega _{1}(z-\eta )^{q}}}{p(z-\eta )} \end{aligned}$$
f
(
z
)
=
H
1
(
z
-
η
)
e
ω
1
(
z
-
η
)
q
p
(
z
-
η
)
with $$\begin{aligned} H^n_1(z)=p^n(z)H_2(z+\eta )e^{\omega _2P_{q-1}(z)}\quad \text {and}\quad P_{q-1}(z)=\sum \limits _{k=1}^q\left( {\begin{array}{c}q\\ k\end{array}}\right) \eta ^kz^{q-k}. \end{aligned}$$
H
1
n
(
z
)
=
p
n
(
z
)
H
2
(
z
+
η
)
e
ω
2
P
q
-
1
(
z
)
and
P
q
-
1
(
z
)
=
∑
k
=
1
q
q
k
η
k
z
q
-
k
.
This result improves Theorems 1.1 and 1.3 from [19] by removing some assumptions of theirs. An example is provided to show that some results obtained in this paper, in a sense, are the best possible.
Funder
The National Natural Science Foundation of China, of Shandong Province
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Ash, R.B.: Complex variables. Academic Press, New York (1971)
2. Ahlfors, L.: Complex Analysis. McGraw-Hill, New York (1979)
3. Cartan, H.: Sur les zéros des combinaisons linéaires de $$p$$ fonctions holomorphes données. Mathematica Cluj 7, 5–31 (1933)
4. Chen, Z.X.: Complex Differences and Difference Equations. Science Press, Beijing (2014)
5. Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of $$f(z+\eta )$$ and difference equations in the complex plane. Ramanujan J. 16(1), 105–129 (2008)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献