Author:
Breva Ribes I.,Oset Sinha R.
Abstract
AbstractWe study the simplicity of map-germs obtained by the operation of augmentation and describe how to obtain their versal unfoldings. When the augmentation comes from an $${\mathscr {A}}_e$$
A
e
-codimension 1 germ or the augmenting function is a Morse function, we give a complete characterisation for simplicity. These characterisations yield all the simple augmentations in all explicitly obtained classifications of $${\mathscr {A}}$$
A
-simple monogerms except for one ($$F_4$$
F
4
in Mond’s list from $$\mathbb C^2$$
C
2
to $$\mathbb C^3$$
C
3
). Moreover, using our results we produce a list of corank 1 simple augmentations from $$\mathbb C^4$$
C
4
to $$\mathbb C^4$$
C
4
.
Funder
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Arnold, V.I.: Local normal forms of functions. Inventiones Math. 35, 87–109 (1976)
2. Cooper, T., Mond, D., Wik Atique, R.: Vanishing topology of codimension 1 multi-germs over $${\mathbb{R} }$$ and $${\mathbb{C} }$$. Compos. Math. 131(2), 121–160 (2002)
3. Gabrièlov, A.M.: Bifurcations, Dynkin diagrams and the modality of isolated singularities. Funkcional. Anal. i Priložen. 8(2), 7–12 (1974)
4. Goryunov, V.V.: Singularities of projections of full intersections. J. Sov. Math. 3(27), 2785–2811 (1984)
5. Houston, K., Kirk, N.: On the classification and geometry of corank 1 map-germs from three-space to four-space. Singularity theory (Liverpool, 1996), xxii, 325–351, London Math. Soc. Lecture Note Ser., 263, Cambridge Univ. Press, Cambridge, 1999
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A note on 1-parameter stable unfoldings;São Paulo Journal of Mathematical Sciences;2023-11-02