Abstract
AbstractIn this paper we study biconservative hypersurfaces M in space forms $$\overline{M}^{n+1}(c)$$
M
¯
n
+
1
(
c
)
with four distinct principal curvatures whose second fundamental form has constant norm. We prove that every such hypersurface has constant mean curvature and constant scalar curvature.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Arvanitoyeorgos, A., Defever, F., Kaimakamis, G., Papantoniou, V.: Biharmonic Lorentzian hypersurfaces in $$\mathbb{E} _1^4$$. Pac. J. Math. 229(2), 293–305 (2007)
2. Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor. Ann. Mat. Pura Appl. 193(2), 529–550 (2014)
3. Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type, 2nd edn. World Scientific, Hackensack (2015)
4. Deepika, Gupta, R.S.: Biharmonic hypersurfaces in $$\mathbb{E} ^5$$ with zero scalar curvature. Afr. Diaspora J. Math. 18(1), 12–26 (2015)
5. Deepika, Gupta, R.S., A.: Sharfuddin, Biharmonic hypersurfaces with constant scalar curvature in $$\mathbb{E} ^5_s$$. Kyungpook Math. J. 56, 273–293 (2016)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献