Abstract
AbstractResearchers dealing with real functions $$\ f\left( \cdot \right) \in L^{1}\left( a,b\right) $$
f
·
∈
L
1
a
,
b
are often challenged with technical difficulties on trying to prove statements involving the positive $$\ f^{\,+}\left( \cdot \right) $$
f
+
·
and negative $$\ f^{\,-}\left( \cdot \right) $$
f
-
·
parts of these functions. Indeed, the set of points where $$\ f\left( \cdot \right) $$
f
·
is positive (resp. negative) is just Lebesgue measurable, and in general these two sets may both have positive measure inside each nonempty open subinterval of $$\ \left( a,b\right) $$
a
,
b
. To remedy this situation, we regularize these sets through open sets. More precisely, for each zero-average $$\ f\left( \cdot \right) \in L^{\,1}\left( a,b\right) $$
f
·
∈
L
1
a
,
b
, we construct, explicitly, a series of functions $$\ \overset{\frown }{f}_{i}\left( \cdot \right) $$
f
⌢
i
·
having sum $$\ f\left( \cdot \right) $$
f
·
— a.e. and in $$\ L^{1}\left( a,b\right) $$
L
1
a
,
b
— in such a way that, for each $$\ i\in \left\{ \,0,1,2,\ldots \, \right\} $$
i
∈
0
,
1
,
2
,
…
, there exist two disjoint open sets where $$\ \overset{\frown }{f}_{i}\left( \cdot \right) \ge 0$$
f
⌢
i
·
≥
0
a.e. and $$\ \overset{\frown }{f}_{i}\left( \cdot \right) \le 0$$
f
⌢
i
·
≤
0
a.e., respectively, while $$\ \overset{\frown }{f}_{i}\left( \cdot \right) =0$$
f
⌢
i
·
=
0
a.e. elsewhere. Moreover, its primitive $$\ \int ^{t}f\left( \cdot \right) $$
∫
t
f
·
becomes the sum of a strongly convergent series of nice AC functions. Applications to calculus of variations & optimal control appear in our next papers.
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Carlota, C., Ornelas, A.: Existence of vector minimizers for nonconvex 1-dim integrals with almost convex Lagrangian. J. Differ. Equ. 243(2), 414–426 (2007)
2. Carlota, C., Ornelas, A.: The DuBois–Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete Contin. Dyn. Syst. A 29(2), 467 (2011)
3. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: $${\mathit{L}}^{p}$$ Spaces. Springer Science & Business Media, Berlin (2007)
4. Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications, vol. 9. Chapman and Hall/CRC, New York (2005)
5. Kolmogorov, A.: Une série de Fourier-Lebesgue divergente partout. CR Acad. Sci. Paris 183, 1327–1328 (1926)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献