Abstract
AbstractWe prove that various Durrmeyer-type operators preserve q-monotonicity in [0, 1] or $$[0,\infty )$$
[
0
,
∞
)
as the case may be. Recall that a 1-monotone function is nondecreasing, a 2-monotone one is convex, and for $$q>2$$
q
>
2
, a q-monotone function possesses a convex $$(q-2)$$
(
q
-
2
)
nd derivative in the interior of the interval. The operators are the Durrmeyer versions of Bernstein (including genuine Bernstein–Durrmeyer), Szász and Baskakov operators. As a byproduct we have a new type of characterization of continuous q-monotone functions by the behavior of the integrals of the function with respect to measures that are related to the fundamental polynomials of the operators.
Funder
Technische Hochschule Mittelhessen
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Abel, U., Leviatan, D.: An extension of Raşa’s conjecture to $$q$$-monotone functions. Results Math. 75, 180–192 (2020)
2. Adell, J.A., de la Cal, J.: Bernstein-Durrmeyer operators. Comput. Math. Appl. 30(3–6), 1–14 (1995)
3. Attalienti, A., Raşa, I.: Total positivity: an application to positive linear operators and their limiting semigroups. Rev. Anal. Numér. Théor. Approx. 36(1), 51–66 (2007)
4. Derriennic, M.M.: Sur l’approximation de functions intégrables sur $$[0,1]$$ par des polynômes de Bernstein modifies. J. Approx. Theory 31, 325–343 (1981)
5. Ditzian, Z., Ivanov, K.: Bernstein-type operators and their derivatives. J. Approx. Theory 56, 72–90 (1989)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献