Author:
Ballester-Bolinches A.,Kamornikov S. F.,Pérez-Calabuig V.,Yi X.
Abstract
AbstractLet $$\mathbb {P}$$
P
be the set of all prime numbers. A subgroup H of a finite group G is said to be $$\mathbb {P}$$
P
-subnormal in G if there exists a chain of subgroups $$\begin{aligned} H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-1} \subseteq H_n = G \end{aligned}$$
H
=
H
0
⊆
H
1
⊆
⋯
⊆
H
n
-
1
⊆
H
n
=
G
such that either $$H_{i-1}$$
H
i
-
1
is normal in $$H_i$$
H
i
or $$|H_i{:}\, H_{i-1}|$$
|
H
i
:
H
i
-
1
|
is a prime number for every $$i = 1, 2, \ldots , n$$
i
=
1
,
2
,
…
,
n
. A subgroup H of G is called a $${{\,\textrm{TI}\,}}$$
TI
-subgroup if every pair of distinct conjugates of H has trivial intersection. The aim of this paper is to give a complete description of all finite groups in which every non-$$\mathbb {P}$$
P
-subnormal subgroup is a $${{\,\textrm{TI}\,}}$$
TI
-subgroup.
Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups, Mathematics and Its Applications, vol. 584. Springer, Dordrecht (2006)
2. Blau, H.L.: On trivial intersections of cyclic Sylow subgroups. Proc. Am. Math. Soc. 94, 572–576 (1985)
3. Doerk, K., Hawkes, T.: Finite Soluble Groups, De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter & Co., Berlin (1992)
4. Guo, X., Li, S., Flavell, P.: Finite groups whose abelian subgroups are TI-subgroups. J. Algebra 307, 5656–5669 (2007)
5. Huppert, B.: Normalteiler und maximale untergruppen endlicher gruppen. Math. Z. 60, 409–434 (1954)