Abstract
AbstractIn this work we study the existence of solutions $$u \in W^{1,p}_0(\Omega )$$
u
∈
W
0
1
,
p
(
Ω
)
to the implicit elliptic problem $$ f(x, u, \nabla u, \Delta _p u)= 0$$
f
(
x
,
u
,
∇
u
,
Δ
p
u
)
=
0
in $$ \Omega $$
Ω
, where $$ \Omega $$
Ω
is a bounded domain in $$ {\mathbb {R}}^N $$
R
N
, $$ N \ge 2 $$
N
≥
2
, with smooth boundary $$ \partial \Omega $$
∂
Ω
, $$ 1< p< \infty $$
1
<
p
<
∞
, and $$ f:\Omega \times {\mathbb {R}}\times {\mathbb {R}}^N \times {\mathbb {R}}\rightarrow {\mathbb {R}}$$
f
:
Ω
×
R
×
R
N
×
R
→
R
. We choose the particular case when the function f can be expressed in the form $$ f(x, z, w, y)= \varphi (x, z, w)- \psi (y) $$
f
(
x
,
z
,
w
,
y
)
=
φ
(
x
,
z
,
w
)
-
ψ
(
y
)
, where the function $$ \psi $$
ψ
depends only on the p-Laplacian $$ \Delta _p u $$
Δ
p
u
. We also present some applications of our results.
Funder
Technische Universität Chemnitz
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Ahmad, M., Zada, A., Alzabut, J.: Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with $$p$$-Laplacian. Adv. Differ. Equ. 2019, Article number: 436 (2019)
2. Bartuzel, G., Fryszkowski, A.: On the existence of solutions for inclusion $$ \Delta u \in F(x, \nabla u) $$. In: Marz (ed) Proceedings of the fourth conference on numerical treatment of ordinary differential equations, volume 65 of Seminarberichte/Humboldt-Univ. zu Berlin, Sekt. Mathematik, Berlin (1984)
3. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)
4. Buttazzo, G., Dal Maso, G., De Giorgi, E.: On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 74, 274–282 (1983)
5. Cabada, A., Heikkilä, S.: Implicit nonlinear discontinuous functional boundary value $$\varphi $$-Laplacian problems: extremality results. Appl. Math. Comput. 129, 537–549 (2002)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献